Soughts of
sorts

| read with great interest

ur recent Mike Liardet
series review of Donald
Knuth's “The Art of
Computer Programming”.
However, in view of its
rather spectacular per-
formance against other sorts
and because | had never
even heard of the distri-
pution sort before, | was
more than a little dis-
appointed that Mr Liardet
dismissed it with the com-
ment that it was “'not univer-
sally applicable”.

One of the monotonously
repetitive tasks of my com-
puter (and, I'm sure, of many
of your readers’) is the sort-
ing of string arrays in which
the keys are the string
elements themselves. I'm
therefore constantly on the
lookout for a faster sort
routine and immediately
determined to try to harness
the distribution sort

After a full day of hacking
(and tearing my hair out!) |

finally settled on the follow-
ing algorithm as being pro-
bably optimal:

1 the use of the distribution
sort as a presort of a
randomly-ordered string
array to arrange the array so
that all string elements
would be clustered with
others sharing the same
initial (naturally in ascending
order); and then

2 the use of an “intelligent”
bubble sort to arrange each
cluster of elements in
lexicographic order.

The following program,
written on a Commodore 64,
generates a randomly-
ordered array of strings,
each of 30 characters’
length, and applies this
distribution/bubble sort
technique to it. The TI$
reference is, of course, the
onboard C64 timer; interes-
ted readers using other com-
puters will have to work out
their own timing devices.

| have chosen 300 as the
size of the array because, as
the following Benchmark
chart shows, that size
appears to be the break-even
point between my sort and
the old faithful Quicksort.
However, my sort has the
advantage that, if the
randomly-ordered array just
happens to be more or less
truly ordered to begin with,
it will perform considerably
faster, whereas — as every-
one knows — the Quicksort
will be disastrously slower in
such a circumstance.

For instance, one Quick-
sort run | performed on a
500-element array took 9
minutes 45 seconds as
opposed to the mean 4
minutes 50 seconds shown
in the chart shown, leading
me to suspect that that par-
ticular randomly-ordered
array was not as random as
it might have been!

I do hope these obser-
vations will be of interest to
some of your readers.

K Riordan

Y=1 70 30
NEXT : NEXT

: NEXT
R=N+1

11 A$(J)=A$: GOTO 6

SORT ***

AS$(K)=A$(K)=A$

IF C(A)=R THEN C(A)=
A$=A$(R) : J=C(A) : C{A)=C(A}-1

BS=A$(J) : A=ASC(B$)-64 : K=C(A) : C(A)=C(A}-1
: A$(J)=AS$ A$=BS : J=K : IF J<>R THEN 10

3
4
5
g R=R-1 : IF R=0 THEN 13
8
9

1 N=300 : DIM A$(N).C(26) : FOR X=1 TO N : FOR
2 Z=INT(RND{(0)*26)+65 : A$(X)=A$(X)+CHR$(Z) :

Ti$="000000" : PRINT TI$” SORTING ... "
FOR J=1 TO N : A=ASC(AS$(J))-64 : C(A)=C(A)+1

FOR J=2 TO 26 : C(J)=C(J)+C(J-1) : NEXT :

A=ASC(A$(R))-64 : IF C(A)<R THEN 6

C(A)-1 : GOTO 6

12 REM *** NOW FOR THE “INTELLIGENT" BUBBLE
13 FORJ=1TON-1: FORK=J+1TON '

IF ASC (A$(J))<ASC(A$(K)) THEN K=N : GOTO 16
15 IF A$(J)>A$(K) THEN A$=AS$(J) : A$(J)=

* NEXT : NEXT : PRINT TI$"” SORTED!" : END

The Benchmarks:

OF ELEMENTS

50
100
150
200
250
300
500

MY SORT QUICKSORT
00’ 05~ 00 08"
00’ 14" 00’ 20"
00’ 24" 00" 41~
00’ 45" 00’ 65"
01' 09" 01" 17"
01’ 45" 01’ 45"
07' 05" 04’ 50"

APC Tunss 6(6) p 1o~ 173,

